skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liao, Irene_T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Nectar is a central bridge between angiosperms and animal mutualists. It is produced by specialized structures termed nectaries, which can be found on different plant organs. Consumption of floral nectar by pollinators and the subsequent transfer of pollen contribute to the reproductive success of both angiosperms and their pollinators. Floral nectaries have evolved many times independently, feature diverse structural organizations, and produce nectars with various compositions, which cater to a wide range of pollinators. While the nectary and its nectar have been documented for two millennia, many aspects of nectary biology are still unknown. Recent advances in genetics, genomics, and comparative analyses across diverse species have accelerated our understanding of floral nectary structures and the genetic circuits behind their formation and evolution. In this review, we summarize the recent breakthroughs in nectary research and provide a macroevolutionary framework of floral nectary evolution, focusing on the genetic mechanisms that drive nectary development and shape nectary diversity. 
    more » « less